Cyclic pointed fusion categories

Agustina Czenky

1 Preliminaries

The goal of this work is to describe pointed fusion categories with underlying cyclic group.

By a tensor category we mean a locally finite rigid \mathbb{C}-linear abelian monoidal category such that the bifunctor $\otimes: \mathcal{C} \times \mathcal{C} \rightarrow \mathcal{C}$ is bilineal on morphisms and the unit object $\mathbf{1}$ is simple. In particular, in a tensor category $\operatorname{End}_{\mathcal{C}}(\mathbf{1}) \simeq \mathbb{C}$. A fusion category is a semisimple tensor category with finitely many isomorphism classes of simple objects.

If all simple objects in a fusion category are invertible then it is called pointed fusion category. Pointed fusion categories are equivalent to fusion categories $\operatorname{Vect}{ }_{G}^{\omega}$ of finite dimensional vector spaces graded by a finite group G, with associativity isomorphism determined by a 3-cocycle ω.

The main result in this work gives a classification for categories of the form Vect ${ }_{\mathbb{Z}_{m}}^{\omega}$ up to equivalence, where \mathbb{Z}_{m} denotes the cyclic group of order $m \in \mathbb{N}$.

2

On this section, let \mathcal{C} be a tensor category and X an object in \mathcal{C} such that there exists an isomorphism $\lambda: X^{\otimes n} \xrightarrow{\sim} \mathbf{1}$. Note that there exists a constant $\xi \in \mathbb{K}$ such that the diagram

commutes. From now on we will call this constant the constant associated to X, and we denote it by ξ_{X}. A priory, said constant depends on the choice of isomorphism $X^{\otimes n} \xrightarrow{\sim} \mathbf{1}$. We have the following lemma.

Lemma 2.1. The constant associated to X does not depend on the choice of isomorphism $X \xrightarrow{\sim} 1$.

Proof. Let λ and ρ be isomorphisms $X^{\otimes n} \xrightarrow{\sim} \mathbf{1}$ and $\xi_{\lambda}, \xi_{\rho} \in \mathbb{C}$ such that

$$
\begin{aligned}
& \lambda \otimes \mathrm{id}=\xi_{\lambda}(\mathrm{id} \otimes \lambda) \\
& \rho \otimes \mathrm{id}=\xi_{\rho}(\mathrm{id} \otimes \rho)
\end{aligned}
$$

We show that $\xi_{\lambda}=\xi_{\rho}$. In fact, by Schur's Lemma there exists $\alpha \in \mathbb{K}$ such that $\lambda=\alpha \rho$ and thus

$$
\rho \otimes \mathrm{id}=\xi_{\rho}(\mathrm{id} \otimes \rho)=\xi_{\rho} \alpha^{-1}(\mathrm{id} \otimes \lambda)=\xi_{\rho} \xi_{\lambda}^{-1} \alpha^{-1}(\lambda \otimes \mathrm{id})=\xi_{\rho} \xi_{\lambda}^{-1}(\rho \otimes \mathrm{id})
$$

Hence $\xi_{\lambda}=\xi_{\rho}$.
Lemma 2.2. The constant associated to X is an $n^{\text {th }}$ root of unity.
Proof. Fix $\lambda: X^{\otimes n} \xrightarrow{\sim}$ 1. We are going to compute $\lambda \otimes \lambda$ in two different ways. By functoriality of the tensor product, $\lambda \otimes \lambda=\lambda\left(\lambda \otimes \mathrm{id}^{\otimes n}\right)$. We show by induction on k that $\lambda \otimes \lambda=\xi^{k} \lambda\left(\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes(n-k)}\right)$ for all $1 \leq k \leq n$. Since the diagram (1) commutes, we get that

$$
\lambda \otimes \lambda=\lambda\left(\lambda \otimes \mathrm{id}^{\otimes(n)}\right)=\xi \lambda\left(\mathrm{id} \otimes \lambda \otimes \mathrm{id}^{\otimes n-1}\right)
$$

and thus the claim is true for $k=1$. Assume that $\lambda \otimes \lambda=\xi^{k} \lambda\left(\mathrm{id}^{\otimes k} \otimes \lambda \otimes\right.$ $\mathrm{id}^{\otimes(n-k)}$) for $1 \leq k<n$. Applying diagram (1) to $\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes(n-k)}$ we get that

$$
\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes(n-k)}=\xi \mathrm{id}^{\otimes k+1} \otimes \lambda \otimes \mathrm{id}^{\otimes(n-k-1)}
$$

and thus by this and the inductive hypothesis

$$
\lambda \otimes \lambda=\xi^{k} \lambda\left(\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes(n-k)}\right)=\xi^{k+1} \lambda\left(\mathrm{id}^{\otimes k+1} \otimes \lambda \otimes \mathrm{id}^{\otimes(n-k-1)}\right)
$$

which is what we wanted. In particular, this implies that

$$
\begin{equation*}
\lambda \otimes \lambda=\xi^{n} \lambda\left(\mathrm{id}^{\otimes n} \otimes \lambda\right) \tag{2}
\end{equation*}
$$

On the other hand, due to the functoriality of the tensor product we have that

$$
\begin{equation*}
\lambda \otimes \lambda=\lambda\left(\mathrm{id}^{\otimes n} \otimes \lambda\right) \tag{3}
\end{equation*}
$$

Hence by equations (2) and (3) we conclude $\xi^{n}=1$.
Consider now the object $X^{\otimes j} \in \mathcal{C}$ for some $j \in \mathbb{N}$. Fix an isomorphism $\lambda: X^{\otimes n} \xrightarrow{\sim}$ 1. Then we have an isomorphism $\lambda^{\otimes j}: X^{n j} \xrightarrow{\sim} \mathbf{1}$ and it makes sense to compute the constant associated to $X^{\otimes j}$. We arrive to the following result.
Lemma 2.3. The constant associated to $X^{\otimes j}$ is exactly $\xi^{j^{2}}$.
Proof. Note that by diagram (1)

$$
\operatorname{id}_{X}^{\otimes j} \otimes \lambda^{\otimes j}=\xi^{j} \lambda \otimes \operatorname{id}_{X}^{\otimes j} \otimes \lambda^{\otimes(j-1)}
$$

Repeating the previous step $j-1$ more times we get

$$
\mathrm{id}_{X}^{\otimes j} \otimes \lambda^{\otimes j}=\xi^{j^{2}} \lambda^{\otimes j} \otimes \mathrm{id}_{X}^{j}
$$

Hence $\xi_{X^{j}}=\xi_{X}^{j^{2}}$.

3

Let n be a natural number and let \mathbb{Z}_{n} be the cyclic group of order n. Let $\zeta \in \mathbb{K}$ be an nth root of 1 . Then ζ determines a 3 -cocyle ω_{ζ} on \mathbb{Z}_{n} in the following way

$$
\omega_{\zeta}(i, j, k)=\zeta^{\frac{i\left(j+k-(j+k)^{\prime}\right)}{n}},
$$

where for an integer m we denote by m^{\prime} the remainder of the division of m by n. Moreover, all 3-cocyles in \mathbb{Z}_{n} modulo coboundaries are of the form ω_{ζ} for some nth root of unity ζ (see [EGNO, Example 2.6.4]). We denote by Vect ${ }_{Z_{n}}^{\zeta}$ the pointed fusion category corresponding to the 3 -cocycle ω_{ζ}.

For any generator X in the category Vect $\boldsymbol{Z}_{\mathbb{Z}_{n}}^{\zeta}$ there exists an isomorphism $X^{\otimes n} \simeq 1$. Hence it makes sense to wonder if the constant associated to a generator X is an invariant in the category.
Lemma 3.1. The constant associated to a generator X in $\operatorname{Vect}_{\mathbb{Z}_{n}}^{\zeta}$ is ζ.
Proof. Let X be a generator and consider λ to be the canonical isomorphism $X^{\otimes n} \simeq 1$. Note that in this case the constant ξ for which the diagram

commutes is given by the associativity map from $X^{\otimes n} \otimes X$ to $X \otimes X^{\otimes n}$. That is,

$$
\xi=\prod_{k=1}^{n-1} \omega_{\zeta}(1, k, 1)=\prod_{k=1}^{n-1} \zeta^{\frac{\left(k+1-(k+1)^{\prime}\right)}{n}}=\zeta .
$$

Corollary 3.2. The categories Vect $t_{\mathbb{Z}_{m}}^{\xi}$ and Vect $\boldsymbol{Z}_{m}^{\zeta}$ are equivalent if and only if there exists $j \in\{1, \cdots, n\}$ such that $\operatorname{gcd}(j, n)=1$ and $\xi^{j^{2}}=\zeta$.

Proof. The previous result implies that the constant associated to generators is in fact an invariant of Vect ${\underset{\mathbb{Z}_{n}}{\zeta}}_{\zeta}^{\zeta_{n}}$. Fix a generator X in the category Vect ${ }_{\mathbb{Z}_{n}}^{\zeta}$. Note that for every $j \in\{1, \cdots, n\}$ such that $\operatorname{gcd}(j, n)=1$ we get that $X^{\otimes j}$ is a also a generator in $\operatorname{Vect}_{\mathbb{Z}_{n}}^{\zeta}$. If ξ denotes the constant associated to X, by Lemma 2.3 the constant associated to $X^{\otimes j}$ is $\xi^{j^{2}}$. The result follows.

Theorem 3.3. Let $m \in \mathbb{N}$ and let p_{1}, \cdots, p_{k} be odd distinct primes such that $m=2^{n_{0}} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$ for some $n_{0}, \cdots, n_{k} \in \mathbb{N}$. Then there are a(m) categories of
the form Vect ${\underset{\mathbb{Z}}{m}}_{\xi}^{\xi}$ up to equivalence, where

$$
a(m)= \begin{cases}\prod_{i=1}^{k}\left(2 n_{i}+1\right) & \text { if } n_{0}=0 \\ 2 \prod_{i=1}^{k}\left(2 n_{i}+1\right) & \text { if } n_{0}=1 \\ 4 \prod_{i=1}^{k}\left(2 n_{i}+1\right) & \text { if } n_{0}=2 \\ 4\left(n_{0}-1\right) \prod_{i=1}^{k}\left(2 n_{i}+1\right) & \text { if } n_{0} \geq 3\end{cases}
$$

Proof. First, assume $m=p^{k}$ for some prime p and $k \in \mathbb{N}$. Consider the action

$$
\begin{aligned}
\left(Z_{p^{k}}\right)^{\times} & \rightarrow \operatorname{End}\left(\mathbb{Z}_{p^{k}}\right) \\
l & \mapsto\left(a \mapsto l^{2} a\right) .
\end{aligned}
$$

By the previous remark the statement reduces to computing the amount of orbits of this action.

Let $a, b \in \mathbb{Z}_{p^{k}}$. Note that a and b are in the same orbit if and only if there exists $x \in\left(Z_{p^{k}}\right)^{\times}$such that $a \equiv b \bmod p^{k}$. Hence a and b are in the same orbit there exists $y \in\left(Z_{p^{k}}\right)^{\times}$such that $a \equiv b \bmod p^{k}$, which is equivalent to $\operatorname{gcd}\left(a, p^{k}\right)=\left(b, p^{k}\right)=p^{l}$ for some $l<m$.

Define the equivalence classes H_{0}, \cdots, H_{m} in $\mathbb{Z}_{p^{k}}$ where for $x \in \mathbb{Z}_{p^{k}}$ we have that $x \in H_{i}$ if and only if x is divisible by p^{i} but not by p^{i+1}. Then it is enough to look at the orbits inside each class. Fix $i<k$. Note that any element in H_{i} can be written as $y p^{i}$ for some $y \in\left(\mathbb{Z}_{p^{k}}\right)^{\times}$. Let $y_{1} p^{i}, y_{2} p^{i} \in H_{i}$, where $y_{1}, y_{2} \in\left(\mathbb{Z}_{p^{k}}\right)^{\times}$. Then $y_{1} p^{i}, y_{2} p^{i}$ are in the same orbit if and only if there exists $x \in\left(Z^{p^{k}}\right)^{\times}$such that

$$
\begin{equation*}
y_{1} p^{i} \equiv x^{2} y_{2} p^{i} \bmod p^{k} . \tag{4}
\end{equation*}
$$

That is

$$
y_{1} \equiv x^{2} y_{2} \bmod p^{k-i}
$$

which is equivalent to

$$
y_{1} y_{2}^{-1} \equiv x^{2} \bmod p^{k-i}
$$

Hence if \mathcal{G}_{k-i} is the subgroup of quadratic residues of $\mathbb{Z}_{p^{k-i}}$ this implies that the amount of orbits of the action in H_{i} is exactly

$$
\left|\mathbb{Z}_{p^{k-i}} / \mathcal{G}_{k-i}\right|
$$

for all $0 \leq i<k$. If p is odd, $\left|\mathbb{Z}_{p^{k-i}} / \mathcal{G}_{k-i}\right|=2$ for all $0 \leq i<k$, and this together with the fact that H_{k} has only one orbit implies that the total amount
of orbits of this action is $2 k+1$. On the other hand, if $p=2$ then

$$
\left|\mathbb{Z}_{p^{k-i}} / \mathcal{G}_{k-i}\right|= \begin{cases}1 & \text { if } i=k-1 \\ 2 & \text { if } i=k-2 \\ 4 & \text { if } 0 \leq i \leq k-3\end{cases}
$$

Hence if $k=1$ the action has exactly two orbits, if $k=2$ the action has four orbits and if $k \geq 3$ the action has $4(k-1)$ orbits.

Finally, for $m=2^{n_{0}} p_{1}^{n_{1}} \cdots p_{k}^{n_{k}}$ note that the action

$$
\begin{aligned}
\left(Z_{m}\right)^{\times} & \rightarrow \operatorname{End}\left(\mathbb{Z}_{m}\right) \\
l & \mapsto\left(a \mapsto l^{2} a\right) .
\end{aligned}
$$

preserves the decomposition

$$
\mathbb{Z}_{m} \simeq \mathbb{Z}_{2^{n_{0}}} \times \mathbb{Z}_{p_{1}^{n_{1}}} \times \cdots \times \mathbb{Z}_{p_{k}^{n_{k}}}
$$

and thus the amount of orbits of the action on \mathbb{Z}_{m} is exactly the product of the amount of orbits of the action restricted to each of the terms $\mathbb{Z}_{p_{i}}^{n_{i}}$. The result follows.

Example 3.4. We compute the number of equivalence classes a (m) of categories of the form Vect ${\underset{\mathbb{Z}}{m}}_{\xi}$ for $m \in\{1, \ldots, 10\}$. We have that

$$
\begin{array}{r}
a(1)=1 \\
a(2)=2 \\
a(3)=3 \\
a(4)=4 \\
a(5)=3 \\
a(6)=6 \\
a(7)=3 \\
a(8)=8 \\
a(9)=5 \\
a(10)=6
\end{array}
$$

References

[EGNO] P. Etingof, S. Gelaki, D. Nikshych, V. Ostrik, Tensor categories. Math. Surv. Monog. 205, Amer. Math. Soc.(2015).

