Cyclic pointed fusion categories

Agustina Czenky

1 Preliminaries

The goal of this work is to describe pointed fusion categories with underlying cyclic group.

By a *tensor category* we mean a locally finite rigid \mathbb{C} -linear abelian monoidal category such that the bifunctor $\otimes : \mathcal{C} \times \mathcal{C} \to \mathcal{C}$ is bilineal on morphisms and the unit object **1** is simple. In particular, in a tensor category $\operatorname{End}_{\mathcal{C}}(1) \simeq \mathbb{C}$. A *fusion category* is a semisimple tensor category with finitely many isomorphism classes of simple objects.

If all simple objects in a fusion category are invertible then it is called *pointed* fusion category. Pointed fusion categories are equivalent to fusion categories $\operatorname{Vect}_G^{\omega}$ of finite dimensional vector spaces graded by a finite group G, with associativity isomorphism determined by a 3-cocycle ω .

The main result in this work gives a classification for categories of the form $\operatorname{Vect}_{\mathbb{Z}_m}^{\omega}$ up to equivalence, where \mathbb{Z}_m denotes the cyclic group of order $m \in \mathbb{N}$.

$\mathbf{2}$

On this section, let \mathcal{C} be a tensor category and X an object in \mathcal{C} such that there exists an isomorphism $\lambda : X^{\otimes n} \xrightarrow{\sim} \mathbf{1}$. Note that there exists a constant $\xi \in \mathbb{K}$ such that the diagram

$$\begin{array}{ccc} X^{\otimes (n+1)} \stackrel{\xi(\operatorname{id} \otimes \lambda)}{\longrightarrow} X \otimes \mathbf{1} \\ & & & \\ \lambda_{\otimes \operatorname{id}} \downarrow & & \downarrow \\ & \mathbf{1} \otimes X \longrightarrow X \end{array} \tag{1}$$

commutes. From now on we will call this constant the constant associated to X, and we denote it by ξ_X . A priory, said constant depends on the choice of isomorphism $X^{\otimes n} \xrightarrow{\sim} 1$. We have the following lemma.

Lemma 2.1. The constant associated to X does not depend on the choice of isomorphism $X \xrightarrow{\sim} 1$.

Proof. Let λ and ρ be isomorphisms $X^{\otimes n} \xrightarrow{\sim} \mathbf{1}$ and $\xi_{\lambda}, \xi_{\rho} \in \mathbb{C}$ such that

$$\lambda \otimes \mathrm{id} = \xi_{\lambda} (\mathrm{id} \otimes \lambda),$$

$$\rho \otimes \mathrm{id} = \xi_{\rho} (\mathrm{id} \otimes \rho).$$

We show that $\xi_{\lambda} = \xi_{\rho}$. In fact, by Schur's Lemma there exists $\alpha \in \mathbb{K}$ such that $\lambda = \alpha \rho$ and thus

$$\rho \otimes \mathrm{id} = \xi_{\rho}(\mathrm{id} \otimes \rho) = \xi_{\rho} \alpha^{-1}(\mathrm{id} \otimes \lambda) = \xi_{\rho} \xi_{\lambda}^{-1} \alpha^{-1}(\lambda \otimes \mathrm{id}) = \xi_{\rho} \xi_{\lambda}^{-1}(\rho \otimes \mathrm{id}).$$

nce $\xi_{\lambda} = \xi_{\rho}.$

Hence $\xi_{\lambda} = \xi_{\rho}$.

Lemma 2.2. The constant associated to X is an n^{th} root of unity.

Proof. Fix $\lambda : X^{\otimes n} \xrightarrow{\sim} \mathbf{1}$. We are going to compute $\lambda \otimes \lambda$ in two different ways. By functoriality of the tensor product, $\lambda \otimes \lambda = \lambda$ ($\lambda \otimes id^{\otimes n}$). We show by induction on k that $\lambda \otimes \lambda = \xi^k \lambda(\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes (n-k)})$ for all $1 \leq k \leq n$. Since the diagram (1) commutes, we get that

$$\lambda \otimes \lambda = \lambda(\lambda \otimes \mathrm{id}^{\otimes(n)}) = \xi \lambda(\mathrm{id} \otimes \lambda \otimes \mathrm{id}^{\otimes n-1}).$$

and thus the claim is true for k = 1. Assume that $\lambda \otimes \lambda = \xi^k \lambda(\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes (n-k)})$ for $1 \leq k < n$. Applying diagram (1) to $\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes (n-k)}$ we get that

$$\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes (n-k)} = \xi \, \mathrm{id}^{\otimes k+1} \otimes \lambda \otimes \mathrm{id}^{\otimes (n-k-1)}$$

and thus by this and the inductive hypothesis

$$\lambda \otimes \lambda = \xi^k \lambda (\mathrm{id}^{\otimes k} \otimes \lambda \otimes \mathrm{id}^{\otimes (n-k)}) = \xi^{k+1} \lambda (\mathrm{id}^{\otimes k+1} \otimes \lambda \otimes \mathrm{id}^{\otimes (n-k-1)}),$$

which is what we wanted. In particular, this implies that

$$\lambda \otimes \lambda = \xi^n \lambda (\mathrm{id}^{\otimes n} \otimes \lambda). \tag{2}$$

On the other hand, due to the functoriality of the tensor product we have that

$$\lambda \otimes \lambda = \lambda (\mathrm{id}^{\otimes n} \otimes \lambda). \tag{3}$$

Hence by equations (2) and (3) we conclude $\xi^n = 1$.

Consider now the object $X^{\otimes j} \in \mathcal{C}$ for some $j \in \mathbb{N}$. Fix an isomorphism $\lambda: X^{\otimes n} \xrightarrow{\sim} \mathbf{1}$. Then we have an isomorphism $\lambda^{\otimes j}: X^{nj} \xrightarrow{\sim} \mathbf{1}$ and it makes sense to compute the constant associated to $X^{\otimes j}$. We arrive to the following result.

Lemma 2.3. The constant associated to $X^{\otimes j}$ is exactly ξ^{j^2} .

Proof. Note that by diagram (1)

$$\mathrm{id}_X^{\otimes j} \otimes \lambda^{\otimes j} = \xi^j \ \lambda \otimes \mathrm{id}_X^{\otimes j} \otimes \lambda^{\otimes (j-1)}.$$

Repeating the previous step j-1 more times we get

$$\operatorname{id}_X^{\otimes j} \otimes \lambda^{\otimes j} = \xi^{j^2} \lambda^{\otimes j} \otimes \operatorname{id}_X^j.$$

Hence $\xi_{X^j} = \xi_X^{j^2}$.

Let *n* be a natural number and let \mathbb{Z}_n be the cyclic group of order *n*. Let $\zeta \in \mathbb{K}$ be an nth root of 1. Then ζ determines a 3-cocyle ω_{ζ} on \mathbb{Z}_n in the following way

$$\omega_{\zeta}(i,j,k) = \zeta^{\frac{i(j+k-(j+k)')}{n}},$$

where for an integer m we denote by m' the remainder of the division of m by n. Moreover, all 3-cocyles in \mathbb{Z}_n modulo coboundaries are of the form ω_{ζ} for some nth root of unity ζ (see [EGNO, Example 2.6.4]). We denote by $\operatorname{Vect}_{\mathbb{Z}_n}^{\zeta}$ the pointed fusion category corresponding to the 3-cocycle ω_{ζ} .

For any generator X in the category $\operatorname{Vect}_{\mathbb{Z}_n}^{\zeta}$ there exists an isomorphism $X^{\otimes n} \simeq \mathbf{1}$. Hence it makes sense to wonder if the constant associated to a generator X is an invariant in the category.

Lemma 3.1. The constant associated to a generator X in $\operatorname{Vect}_{\mathbb{Z}_n}^{\zeta}$ is ζ .

Proof. Let X be a generator and consider λ to be the canonical isomorphism $X^{\otimes n} \simeq \mathbf{1}$. Note that in this case the constant ξ for which the diagram

commutes is given by the associativity map from $X^{\otimes n} \otimes X$ to $X \otimes X^{\otimes n}$. That is,

$$\xi = \prod_{k=1}^{n-1} \omega_{\zeta}(1,k,1) = \prod_{k=1}^{n-1} \zeta^{\frac{(k+1-(k+1)')}{n}} = \zeta.$$

Corollary 3.2. The categories $\operatorname{Vect}_{\mathbb{Z}_m}^{\xi}$ and $\operatorname{Vect}_{\mathbb{Z}_m}^{\zeta}$ are equivalent if and only if there exists $j \in \{1, \dots, n\}$ such that $\operatorname{gcd}(j, n) = 1$ and $\xi^{j^2} = \zeta$.

Proof. The previous result implies that the constant associated to generators is in fact an invariant of $\operatorname{Vect}_{\mathbb{Z}_n}^{\zeta}$. Fix a generator X in the category $\operatorname{Vect}_{\mathbb{Z}_n}^{\zeta}$. Note that for every $j \in \{1, \dots, n\}$ such that $\operatorname{gcd}(j, n) = 1$ we get that $X^{\otimes j}$ is a also a generator in $\operatorname{Vect}_{\mathbb{Z}_n}^{\zeta}$. If ξ denotes the constant associated to X, by Lemma 2.3 the constant associated to $X^{\otimes j}$ is ξ^{j^2} . The result follows.

Theorem 3.3. Let $m \in \mathbb{N}$ and let p_1, \dots, p_k be odd distinct primes such that $m = 2^{n_0} p_1^{n_1} \cdots p_k^{n_k}$ for some $n_0, \dots, n_k \in \mathbb{N}$. Then there are a(m) categories of

the form $\operatorname{Vect}_{\mathbb{Z}_m}^{\xi}$ up to equivalence, where

$$a(m) = \begin{cases} \prod_{i=1}^{k} (2n_i + 1) & \text{if } n_0 = 0\\ 2\prod_{i=1}^{k} (2n_i + 1) & \text{if } n_0 = 1\\ 4\prod_{i=1}^{k} (2n_i + 1) & \text{if } n_0 = 2\\ 4(n_0 - 1)\prod_{i=1}^{k} (2n_i + 1) & \text{if } n_0 \ge 3. \end{cases}$$

Proof. First, assume $m = p^k$ for some prime p and $k \in \mathbb{N}$. Consider the action

$$(Z_{p^k})^{\times} \to \operatorname{End}(\mathbb{Z}_{p^k})$$

 $l \mapsto (a \mapsto l^2 a).$

By the previous remark the statement reduces to computing the amount of orbits of this action.

Let $a, b \in \mathbb{Z}_{p^k}$. Note that a and b are in the same orbit if and only if there exists $x \in (Z_{p^k})^{\times}$ such that $a \equiv b \mod p^k$. Hence a and b are in the same orbit there exists $y \in (Z_{p^k})^{\times}$ such that $a \equiv b \mod p^k$, which is equivalent to $\gcd(a, p^k) = (b, p^k) = p^l$ for some l < m.

Define the equivalence classes H_0, \dots, H_m in \mathbb{Z}_{p^k} where for $x \in \mathbb{Z}_{p^k}$ we have that $x \in H_i$ if and only if x is divisible by p^i but not by p^{i+1} . Then it is enough to look at the orbits inside each class. Fix i < k. Note that any element in H_i can be written as yp^i for some $y \in (\mathbb{Z}_{p^k})^{\times}$. Let $y_1p^i, y_2p^i \in H_i$, where $y_1, y_2 \in (\mathbb{Z}_{p^k})^{\times}$. Then y_1p^i, y_2p^i are in the same orbit if and only if there exists $x \in (Z^{p^k})^{\times}$ such that

$$y_1 p^i \equiv x^2 y_2 p^i \operatorname{mod} p^k.$$

$$\tag{4}$$

That is

$$y_1 \equiv x^2 y_2 \operatorname{mod} p^{k-i}$$

which is equivalent to

$$y_1 y_2^{-1} \equiv x^2 \operatorname{mod} p^{k-i}.$$

Hence if \mathcal{G}_{k-i} is the subgroup of quadratic residues of $\mathbb{Z}_{p^{k-i}}$ this implies that the amount of orbits of the action in H_i is exactly

$$\left|\mathbb{Z}_{p^{k-i}}/\mathcal{G}_{k-i}\right|$$

for all $0 \leq i < k$. If p is odd, $\left|\mathbb{Z}_{p^{k-i}}/\mathcal{G}_{k-i}\right| = 2$ for all $0 \leq i < k$, and this together with the fact that H_k has only one orbit implies that the total amount

of orbits of this action is 2k + 1. On the other hand, if p = 2 then

$$\left| \mathbb{Z}_{p^{k-i}} / \mathcal{G}_{k-i} \right| = \begin{cases} 1 & \text{if } i = k-1 \\ 2 & \text{if } i = k-2 \\ 4 & \text{if } 0 \le i \le k-3. \end{cases}$$

Hence if k = 1 the action has exactly two orbits, if k = 2 the action has four orbits and if $k \ge 3$ the action has 4(k-1) orbits.

Finally, for $m = 2^{n_0} p_1^{n_1} \cdots p_k^{n_k}$ note that the action

$$(Z_m)^{\times} \to \operatorname{End}(\mathbb{Z}_m)$$

 $l \mapsto (a \mapsto l^2 a)$

preserves the decomposition

$$\mathbb{Z}_m \simeq \mathbb{Z}_{2^{n_0}} \times \mathbb{Z}_{p_1^{n_1}} \times \cdots \times \mathbb{Z}_{p_k^{n_k}}$$

and thus the amount of orbits of the action on \mathbb{Z}_m is exactly the product of the amount of orbits of the action restricted to each of the terms $\mathbb{Z}_{p_i^{n_i}}$. The result follows.

Example 3.4. We compute the number of equivalence classes a(m) of categories of the form $\operatorname{Vect}_{\mathbb{Z}_m}^{\xi}$ for $m \in \{1, \ldots, 10\}$. We have that

$$a(1) = 1,$$

$$a(2) = 2,$$

$$a(3) = 3,$$

$$a(4) = 4,$$

$$a(5) = 3,$$

$$a(6) = 6,$$

$$a(7) = 3,$$

$$a(8) = 8,$$

$$a(9) = 5,$$

$$a(10) = 6.$$

References

[EGNO] P. ETINGOF, S. GELAKI, D. NIKSHYCH, V. OSTRIK, Tensor categories. Math. Surv. Monog. 205, Amer. Math. Soc. (2015).